Distance Aware Ray Tracing for Curves

Koji Nakamaru; Toru Matsuoka! Masahiro Fujita*

(a) (b)

Y, '1 .

(© (d)

Figure 1: (a) Our approach with one sample per pixel, 5.83 min. (b) 8 X8 samples per pixel, 11.35 min. (c) 16X 16 samples per pixel, 47.42
min. Our approach achieves a smooth result while others are noisy regardless of many samples. (d) Reflection/refraction is also supported.

1 Introduction

The “curves” primitive provides a way to define ribbon-like ob-
jects such as fur and hair. Ray tracing thin primitives is a difficult
problem. It is possible to compute ray/curve intersections without
tessellation [Nakamaru and Ohno 2002], but it requires many sam-
ples to reduce aliasing. On the other hand, GPU/rasterization based
methods incorporate the concept of an A-buffer for correctly accu-
mulating fragments’ colors according to their coverages [Yu et al.
2012].

In this work, we propose distance-aware ray tracing for curves, and
combine it with the concept of an A-buffer for smooth rendering
with low samples. “Distance-aware” means that the method can
support not only actual intersections but also distances to curves.
We use ray differentials [Igehy 1999] and distances to approximate
curves’ coverages and accumulate their colors and opacities in the
correct order.

2 Our Approach

The original ray-curves intersection algorithm utilizes a ribbon
width as a margin for culling sub-curves generated in subdivision.
We instead use a largest ray differential that can be easily deter-
mined by computing ray differentials at near/far z positions of the
curve. After the curve is fully subdivided, we compute the distance
to the survived sub-curve and corresponding ray differentials. In
our current implementation, the coverage is then approximated as
follows:

// uw: half the width of the ribbon.
// d: distance to the ribbon’s central axis.
// r: ray extent’s radius based on ray differentials.

do = d - uw;
dl = d + uw;
if (d0 >= 0) // outside
coverage = (min(dl / r, 1.0) - min(d0 / r, 1.0)) =* 0.5;
else // inside
coverage = (min(dl / r, 1.0) + min(-d0 / r, 1.0)) = 0.5;

where coverages larger than zero are returned with other informa-
tion and they are added to the (pseudo) intersection list.

*e-mail:nakamaru @gmail.com
Te-mail:tx. matsuoka @ gmail.com
te-mail:syoyo@lighttransport.com

For rendering many curves, we have to take into account ray differ-
entials in traversing an acceleration structure. We currently utilize
a uniform grid and traverse it in a manner similar to the slice-based
packet traversal [Wald et al. 2006]. By incrementally computing
ray differentials (projected onto the plane perpendicular to the ma-

jor traversal axis), we determine the current ray’s “extent” and cor-
responding cells.

The grid traversal allows for nearly front-to-back checking order,
however it doesn’t guarantee that the intersection list is sorted. Sort-
ing the list for every traversal step is too expensive, SO we sort it
once every five traversal steps. The final contribution of each in-
tersection is then determined while accumulating opacity as well.
We terminate the traversal and avoid subsequent intersection tests if
opacity falls below some small threshold. Similarly, we also avoid
tracing reflection/refraction/shadow rays if the final contribution is
sufficiently small. These adaptive methods greatly reduce traversal
steps and intersection tests.

Figure 1 shows several results. We achieve a smooth rendering even
with one sample per pixel. Although the cost of each sample is
large, our approach outperforms traditional methods when the scene
contains many fine details.

References

IGEHY, H. 1999. Tracing ray differentials. In Proceedings of the
26th annual conference on Computer graphics and interactive
techniques, ACM Press/Addison-Wesley Publishing Co., New
York, NY, USA, SIGGRAPH ’99, 179-186.

NAKAMARU, K., AND OHNO, Y. 2002. Ray tracing for curves
primitive. In Journal of WSCG (WSCG 2002 Proceedings),
V. Skala, Ed., vol. 10, 311-316. ISSN 1213-6980.

WALD, 1., IZE, T., KENSLER, A., KNOLL, A., AND PARKER,
S. G. 2006. Ray tracing animated scenes using coherent grid
traversal. In ACM SIGGRAPH 2006 Papers, ACM, New York,
NY, USA, SIGGRAPH ’06, 485-493.

YU, X., YANG, J. C., HENSLEY, J., HARADA, T., AND YU, J.
2012. A framework for rendering complex scattering effects on
hair. In Proceedings of the ACM SIGGRAPH Symposium on In-
teractive 3D Graphics and Games, ACM, New York, NY, USA,
13D *12, 111-118.



